Chapter 4

FINITE FIELDS

RAPEEPORN PUNYAYUTTHAKARN
CISSP, CISA, OSSA
Introduction

- will now introduce finite fields
- of increasing importance in cryptography
 - AES, Elliptic Curve, IDEA, Public Key
- concern operations on “numbers”
 - where what constitutes a “number” and the type of operations varies considerably
- start with concepts of groups, rings, fields from abstract algebra
Groups, Rings, Fields
Group

- a set of elements or “numbers”
- with some operation whose result is also in the set (closure)
- obeys:
 - associative law: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
 - has identity e: $e \cdot a = a \cdot e = a$
 - has inverses a^{-1}: $a \cdot a^{-1} = e$
- if commutative $a \cdot b = b \cdot a$
 - then forms an abelian group
First example: the integers

One of the most familiar groups is the set of integers \(\mathbb{Z} \) which consists of the numbers

\[..., -4, -3, -2, -1, 0, 1, 2, 3, 4, ... \] \[[3] \]

The following properties of integer addition serve as a model for the abstract group axioms given in the definition below.

1. For any two integers \(a \) and \(b \), the sum \(a + b \) is also an integer. In other words, the process of adding integers two at a time can never yield a result that is not an integer. This property is known as \(\text{closure} \) under addition.

2. For all integers \(a, b \) and \(c \), \((a + b) + c = a + (b + c) \). Expressed in words, adding \(a \) to \(b \) first, and then adding the result to \(c \) gives the same final result as adding \(a \) to the sum of \(b \) and \(c \), a property known as \(\text{associativity} \).

3. If \(a \) is any integer, then \(0 + a = a + 0 = a \). Zero is called the \(\text{identity element} \) of addition because adding it to any integer returns the same integer.

4. For every integer \(a \), there is an integer \(b \) such that \(a + b = b + a = 0 \). The integer \(b \) is called the \(\text{inverse element} \) of the integer \(a \) and is denoted \(-a \).
Cyclic Group

- A cyclic group is a group all of whose elements are powers of a particular element.
- A group is cyclic if every element is a power of some fixed element.
 - \(b = a^k \) for some \(a \) and every \(b \) in group.
- \(a \) is said to be a generator of the group.
- Define exponentiation as repeated application of operator.
 - Example: \(a^3 = a \cdot a \cdot a \).
- And let identity be: \(e = a^0 \).
Ring

- a set of “numbers”
- with *two operations* (addition and multiplication) which form:
 - an abelian group with addition operation
 - and multiplication:
 - has closure
 - is associative
 - distributive over addition:
 - \(a (b+c) = ab + ac \)
 - \((a+b) c = ac + bc \)
Ring

- If multiplication operation is commutative, it forms a **commutative ring**

Integral domain - If multiplication operation has
 - an identity and
 - no zero divisors
 - If \(ab = 0 \) then either \(a = 0 \), or \(b = 0 \)
Field

- a set of numbers
- with two operations
 - Addition
 - Multiplication
- is an *Integral Domain*
- has *Multiplication Inverse*
- Finite field – Field with a finite number of elements

*Real Number??, Complex Number??, Integer ???
Group, Ring, Field

(A1) Closure under addition:

If a and b belong to S, then $a + b$ is also in S

$\forall a, b \in S$, $a + b \in S$

(A2) Associativity of addition:

$a + (b + c) = (a + b) + c$ for all $a, b, c \in S$

(A3) Additive identity:

There is an element 0 in R such that

$a + 0 = 0 + a = a$ for all $a \in S$

(A4) Additive inverse:

For each $a \in S$ there is an element $-a$ in S such that

$a + (-a) = (-a) + a = 0$

(A5) Commutativity of addition:

$a + b = b + a$ for all $a, b \in S$

(M1) Closure under multiplication:

If a and b belong to S, then ab is also in S

(M2) Associativity of multiplication:

$a(bc) = (ab)c$ for all $a, b, c \in S$

(M3) Distributive laws:

$a(b + c) = ab + ac$ for all $a, b, c \in S$

$(a + b)c = ac + bc$ for all $a, b, c \in S$

(M4) Commutativity of multiplication:

$a b = b a$ for all $a, b \in S$

(M5) Multiplicative identity:

There is an element 1 in S such that

$al = la = a$ for all $a \in S$

(M6) No zero divisors:

If $a, b \in S$ and $ab = 0$, then either

$a = 0$ or $b = 0$

(M7) Multiplicative inverse:

If a belongs to S and $a \neq 0$, there is an element a^{-1} in S such that $aa^{-1} = a^{-1}a = 1$
Modular Arithmatic
Modular Arithmetic

- define **modulo operator** “\(a \mod n \)” to be remainder when \(a \) is divided by \(n \)
 - The remainder is called **residue** of \(a \mod n \)
- if \(b \) is a **residue** of \(a \mod n \)
 - we can always write: \(a = qn + b \)
 - usually chose smallest positive remainder as residue
 - ie. \(0 \leq b \leq n-1 \)
 - process is known as **modulo reduction**
 - eg. \(-12 \mod 7 = -5 \mod 7 = 2 \mod 7\)
Modular Arithmetic

- use the term **congruence** for: \(a \equiv b \pmod{n} \)
 - *when divided by* \(n \), *\(a \) & \(b \) have same remainder*
 - *eg. 100 \(\equiv \) 34 (mod 11)*

- **Note:** the “mod \(n \)” operator maps all integers into the set of integers
 \[
 \{ 0, 1, 2, \ldots, (n-1) \}
 \]
Divisors

- say a non-zero number b divides a if for some m have $a = mb$ (a, b, m all integers)
- that is b divides into a with no remainder
- denote this $b | a$
- and say that b is a divisor of a
- eg. divisors of 24 are 1,2,3,4,6,8,12,24

- Note: if $a \equiv 0 \pmod{n}$ then $n | a$
Modular Arithmetic Operations

- is 'clock arithmetic'
 - the “mod n” operator maps all integers into the set of integers \{0, 1, 2, \ldots, (n-1)\}
 - arithmetic operations within the confines of the set
- uses a finite number of values, and loops back from either end
- modular arithmetic is when do addition & multiplication and modulo reduce answer
- can do reduction at any point, ie
 - \((a+b) \mod n = [a \mod n + b \mod n] \mod n\)
 - \((a\times b) \mod n = [a \mod n \times b \mod n] \mod n\)
Example – Modulo 8

(a) Addition modulo 8

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

(b) Multiplication modulo 8

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

(c) Additive and multiplicative inverses modulo 8

<table>
<thead>
<tr>
<th>w</th>
<th>(-w)</th>
<th>(w^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>
Properties of Modular Arithmetic

- Define the set of nonnegative integers less than n
 \[Z_n = \{0, 1, \ldots, n-1\} \]

- Residue Classes

- Perform Modular Arithmetic within \(Z_n \), the followings hold
 - Closure (+, *)
 - Associative (+, *)
 - Identities (+, *)
 - Inverse (+)
 - Distributive
 - Commutative (+, *)
Modular Arithmetic

- \mathbb{Z}_n form a commutative ring
- with a multiplicative identity
- note some peculiarities
 - if $(a+b) \equiv (a+c) \pmod{n}$
 then $b \equiv c \pmod{n}$
 - but if $(a\times b) \equiv (a\times c) \pmod{n}$
 then $b \equiv c \pmod{n}$

only if a is relatively prime to n
To see this, consider an example in which the condition of Equation (4.3) does not hold. The integers 6 and 8 are not relatively prime, since they have the common factor 2. We have the following:

\[6 \times 3 = 18 \equiv 2 \pmod{8}\]

\[6 \times 7 = 42 \equiv 2 \pmod{8}\]

Yet \[3 \not\equiv 7 \pmod{8}\].
Modular Arithmetic

Reason
- The multiplier a fails to produce the complete set of residues if a and n have any factors in common.

With $a = 6$ and $n = 8$,

<table>
<thead>
<tr>
<th>Z_8</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiply by 6</td>
<td>0</td>
<td>6</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td>30</td>
<td>36</td>
<td>42</td>
</tr>
<tr>
<td>Residues</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Because we do not have a complete set of residues when multiplying by 6, more than one integer in Z_8 maps into the same residue. Specifically, $6 \times 0 \equiv 0 \mod 8$, $6 \times 1 \equiv 0 \mod 8$, $6 \times 2 \equiv 0 \mod 8$, and so on. Because this is a many-to-one mapping, there is not a unique inverse to the multiply operation.

However, if we take $a = 5$ and $n = 8$, whose only common factor is 1,

<table>
<thead>
<tr>
<th>Z_8</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiply by 6</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>Residues</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

The line of residues contains all the integers in Z_8, in a different order.
Euclidean Algorithm
Greatest Common Divisor (GCD)

- Euclidean Algorithm – Determining GCD
- GCD (a, b) of a and b is the largest number that divides evenly into both a and b
 - eg GCD(60, 24) = 12
- often want **no common factors** (except 1) and hence numbers are **relatively prime**
 - eg GCD(8, 15) = 1
 - hence 8 & 15 are relatively prime
Euclidean Algorithm

- an efficient way to find the GCD(a,b)
- uses theorem that:
 - \(\text{GCD}(a, b) = \text{GCD}(b, a \mod b) \)
- Euclidean Algorithm to compute GCD(a,b) is:

 EUCLID(a,b)
 1. \(A = a; B = b \)
 2. if \(B = 0 \) return \(A = \text{gcd}(a, b) \)
 3. \(R = A \mod B \)
 4. \(A = B \)
 5. \(B = R \)
 6. goto 2
Example GCD(1970, 1066)

1970 = 1 \times 1066 + 904
gcd(1066, 904)

1066 = 1 \times 904 + 162
gcd(904, 162)

904 = 5 \times 162 + 94
gcd(162, 94)

162 = 1 \times 94 + 68
gcd(94, 68)

94 = 1 \times 68 + 26
gcd(68, 26)

68 = 2 \times 26 + 16
gcd(26, 16)

26 = 1 \times 16 + 10
gcd(16, 10)

16 = 1 \times 10 + 6
gcd(10, 6)

10 = 1 \times 6 + 4
gcd(6, 4)

6 = 1 \times 4 + 2
gcd(4, 2)

4 = 2 \times 2 + 0
gcd(2, 0)
Galois Field - GF(p)
Galois Fields

- Finite Field – Field with a finite number of elements
- finite fields play a key role in cryptography
- can show number of elements in a finite field must be a power of a prime \(p^n \)
- known as Galois fields
- denoted \(\text{GF}(p^n) \)
- in particular often use the fields:
 - \(\text{GF}(p) \)
 - \(\text{GF}(2^n) \)
Galois Fields GF(p)

- GF(p) is the set of integers \{0,1, \ldots, p-1\} with arithmetic operations modulo prime p
- these form a finite field
 - since have multiplicative inverses
 - why???
- hence arithmetic is “well-behaved” and can do addition, subtraction, multiplication, and division without leaving the field GF(p)

- \((a*b) \equiv (a*c) \pmod{p}\) then \(b \equiv c \pmod{p}\)
GF(7) Example

(a) Addition modulo 7

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

(b) Multiplication modulo 7

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

(c) Additive and multiplicative inverses modulo 7

<table>
<thead>
<tr>
<th></th>
<th>w</th>
<th>-w</th>
<th>w⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>
Finding Inverses

EXTENDED EUCLID(m, b)

1. $(A_1, A_2, A_3) = (1, 0, m)$;
 $(B_1, B_2, B_3) = (0, 1, b)$

2. if $B_3 = 0$
 return $A_3 = \gcd(m, b)$; no inverse

3. if $B_3 = 1$
 return $B_3 = \gcd(m, b)$; $B_2 = b^{-1} \mod m$

4. $Q = A_3 \div B_3$

5. $(T_1, T_2, T_3) = (A_1 - Q B_1, A_2 - Q B_2, A_3 - Q B_3)$

6. $(A_1, A_2, A_3) = (B_1, B_2, B_3)$

7. $(B_1, B_2, B_3) = (T_1, T_2, T_3)$

8. goto 2
Inverse of 550 in GF(1759)

<table>
<thead>
<tr>
<th>Q</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>1</td>
<td>0</td>
<td>1759</td>
<td>0</td>
<td>1</td>
<td>550</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>550</td>
<td>1</td>
<td>–3</td>
<td>109</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>–3</td>
<td>109</td>
<td>–5</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>21</td>
<td>–5</td>
<td>16</td>
<td>5</td>
<td>106</td>
<td>–339</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>106</td>
<td>–339</td>
<td>4</td>
<td>–111</td>
<td>355</td>
<td>1</td>
</tr>
</tbody>
</table>
Polynomial Arithmetic
Polynomial Arithmetic

- A polynomial degree \(n \)

\[f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 = \sum a_i x^i \]
 - not interested in any specific value of \(x \)
 - which is known as the indeterminate

- several alternatives/classes available
 - ordinary polynomial arithmetic
 - poly arithmetic with coefficients performed mod \(p \)
 - poly arithmetic with coefficients performed mod \(p \) and polynomials mod \(m(x) \)
Ordinary Polynomial

- add or subtract corresponding coefficients
- multiply all terms by each other
- eg

 let $f(x) = x^3 + x^2 + 2$ and $g(x) = x^2 - x + 1$
 $f(x) + g(x) = x^3 + 2x^2 - x + 3$
 $f(x) - g(x) = x^3 + x + 1$
 $f(x) \times g(x) = x^5 + 3x^2 - 2x + 2$
Polynomial Arithmetic with Modulo Coefficients

- Polynomial which coef are elements of filed
 - forms a polynomial ring
- could be modulo any prime
- but we are most interested in mod 2
 - ie all coefficients are 0 or 1
 - eg. let $f(x) = x^3 + x^2$ and $g(x) = x^2 + x + 1$
 - $f(x) + g(x) = x^3 + x + 1$
 - $f(x) \times g(x) = x^5 + x^2$
Polynomial Division

- can write any polynomial in the form: $f(x) = q(x)g(x) + r(x)$
 - can interpret $r(x)$ as being a remainder
 - $r(x) = f(x) \mod g(x)$
- if have no remainder say $g(x)$ divides $f(x)$
- if $g(x)$ has no divisors other than itself & 1 say it is **irreducible** (or **prime polynomial**)
- arithmetic modulo an irreducible polynomial forms a field
Polynomial GCD

- can find greatest common divisor for polys
 - \(c(x) = \text{GCD}(a(x), b(x)) \) if \(c(x) \) is the poly of greatest degree which divides both \(a(x), b(x) \)
- can adapt Euclid’s Algorithm to find it:

 EUCLID\([a(x), b(x)]\]

1. \(A(x) = a(x); B(x) = b(x) \)
2. if \(B(x) = 0 \) return \(A(x) = \text{gcd}[a(x), b(x)] \)
3. \(R(x) = A(x) \mod B(x) \)
4. \(A(x) \div B(x) \)
5. \(B(x) \div R(x) \)
6. goto 2
Finite Field – GF(2^n)
Finite Field – GF(2^n)

- Motivation - Need to work on a field
 - In case the encryption algo. needs division operation
- Motivation – Would like to work with integers that fit exactly into a given number of bits

- EX: 8-bits Data => integers from 0–255
- $2^8 = 256$ => not a prime so \mathbb{Z}_{256} is not a field
- The closet prime number is 251 => Operate on \mathbb{Z}_{251}
- Waste 251–255
Finite Field – GF(2^n)

- **Motivation** – the occurrences of non-zero integers is not uniform
 - Weak for encryption algorithm

<table>
<thead>
<tr>
<th>Integer</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occurrences in \mathbb{Z}_8</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>12</td>
<td>4</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Occurrences in GF(2^3)</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

- Finding a Filed in form 2^n
GF(2^3)

(a) Addition

<table>
<thead>
<tr>
<th>+</th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>001</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>010</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>011</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>101</td>
<td>5</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>110</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>111</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

(b) Multiplication

<table>
<thead>
<tr>
<th>×</th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>001</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>010</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>011</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>7</td>
<td>6</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>101</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>110</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>7</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>111</td>
<td>7</td>
<td>0</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

(c) Additive and multiplicative inverses

<table>
<thead>
<tr>
<th>w</th>
<th>-w</th>
<th>w^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>
Modular Polynomial Arithmetic

- can compute in field GF(2^n)
 - polynomials with coefficients modulo 2
 - whose degree is less than n
 - hence must reduce modulo an irreducible poly of degree n (for multiplication only)
- form a finite field
- can always find an inverse
 - can extend Euclid’s Inverse algorithm to find
Construct $\text{GF}(2^3)$

- Need to choose irreducible polynomial of degree 3
 - $x^3 + x + 1$
Construct \(GF(2^3)\)

Table 4.6 Polynomial Arithmetic Modulo \((x^3 + x + 1)\)

(a) Addition

<table>
<thead>
<tr>
<th></th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(x)</td>
<td>(x + 1)</td>
<td>(x^2)</td>
<td>(x^2 + 1)</td>
<td>(x^2 + x)</td>
<td>(x^2 + x + 1)</td>
</tr>
<tr>
<td>1</td>
<td>(x + 1)</td>
<td>0</td>
<td>(x)</td>
<td>(x^2 + 1)</td>
<td>(x^2)</td>
<td>(x^2 + x + 1)</td>
<td>(x^2 + x)</td>
<td>(x^2 + 1)</td>
</tr>
<tr>
<td>(x)</td>
<td>(x + 1)</td>
<td>0</td>
<td>1</td>
<td>(x^2 + x)</td>
<td>(x^2 + x + 1)</td>
<td>(x^2)</td>
<td>(x^2 + 1)</td>
<td>(x^2 + x)</td>
</tr>
<tr>
<td>(x + 1)</td>
<td>(x)</td>
<td>1</td>
<td>0</td>
<td>(x^2 + x + 1)</td>
<td>(x^2 + x)</td>
<td>(x^2)</td>
<td>(x^2 + 1)</td>
<td>1</td>
</tr>
<tr>
<td>(x^2)</td>
<td>(x^2 + 1)</td>
<td>(x^2 + x)</td>
<td>(x^2 + x + 1)</td>
<td>0</td>
<td>1</td>
<td>(x)</td>
<td>(x + 1)</td>
<td>(x)</td>
</tr>
<tr>
<td>(x^2 + 1)</td>
<td>(x^2 + x)</td>
<td>(x^2 + x + 1)</td>
<td>(x^2 + x)</td>
<td>(x)</td>
<td>(x + 1)</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(x^2 + x)</td>
<td>(x^2 + x + 1)</td>
<td>(x^2 + x)</td>
<td>(x^2 + 1)</td>
<td>(x)</td>
<td>(x + 1)</td>
<td>(x)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(x^2 + x + 1)</td>
<td>(x^2 + x)</td>
<td>(x^2 + 1)</td>
<td>(x)</td>
<td>(x + 1)</td>
<td>(x)</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

(b) Multiplication

<table>
<thead>
<tr>
<th></th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(x)</td>
<td>0</td>
<td>(x^2)</td>
<td>(x^2 + x)</td>
<td>(x + 1)</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>(x + 1)</td>
<td>1</td>
<td>(x^2)</td>
<td>(x^2 + x)</td>
<td>(x + 1)</td>
<td>(x^2 + x + 1)</td>
<td>(x^2 + 1)</td>
<td>(x)</td>
</tr>
<tr>
<td>(x)</td>
<td>0</td>
<td>(x)</td>
<td>(x^2)</td>
<td>(x^2 + x)</td>
<td>(x + 1)</td>
<td>(x^2 + x + 1)</td>
<td>(x^2 + 1)</td>
<td>(x)</td>
</tr>
<tr>
<td>(x + 1)</td>
<td>(x + 1)</td>
<td>(x^2 + x)</td>
<td>(x^2 + x + 1)</td>
<td>(x^2)</td>
<td>(x^2 + 1)</td>
<td>(x)</td>
<td>(x)</td>
<td></td>
</tr>
<tr>
<td>(x^2)</td>
<td>0</td>
<td>(x^2)</td>
<td>(x + 1)</td>
<td>(x^2 + x + 1)</td>
<td>(x^2 + x)</td>
<td>(x)</td>
<td>(x + 1)</td>
<td>1</td>
</tr>
<tr>
<td>(x^2 + 1)</td>
<td>0</td>
<td>(x^2 + 1)</td>
<td>(x)</td>
<td>(x + 1)</td>
<td>(x^2 + x + 1)</td>
<td>(x + 1)</td>
<td>(x^2 + x)</td>
<td></td>
</tr>
<tr>
<td>(x^2 + x)</td>
<td>0</td>
<td>(x^2 + x)</td>
<td>(x^2 + x + 1)</td>
<td>1</td>
<td>(x^2 + 1)</td>
<td>(x + 1)</td>
<td>(x)</td>
<td>(x^2)</td>
</tr>
<tr>
<td>(x^2 + x + 1)</td>
<td>0</td>
<td>(x^2 + x + 1)</td>
<td>(x^2 + 1)</td>
<td>(x)</td>
<td>(x + 1)</td>
<td>(x)</td>
<td>(x + 1)</td>
<td>1</td>
</tr>
</tbody>
</table>
Computational Considerations

- since coefficients are 0 or 1, can represent any such polynomial as a bit string
- addition becomes XOR of these bit strings
- multiplication is shift & XOR
 - cf long-hand multiplication
- modulo reduction done by repeatedly substituting highest power with remainder of irreducible poly (also shift & XOR)
in $\text{GF}(2^3)$ have (x^2+1) is 101_2 & (x^2+x+1) is 111_2

so addition is
- $(x^2+1) + (x^2+x+1) = x$
- $101 \ XOR \ 111 = 010_2$

and multiplication is
- $(x+1).(x^2+1) = x.(x^2+1) + 1.(x^2+1)$
 $= x^3+x+x^2+1 = x^3+x^2+x+1$
- $011.101 = (101)<<1 \ XOR \ (101)<<0 = 1010 \ XOR \ 101 = 1111_2$

polynomial modulo reduction (get $q(x)$ & $r(x)$) is
- $(x^3+x^2+x+1) \ mod \ (x^3+x+1) = 1.(x^3+x+1) + (x^2) = x^2$
- $1111 \ mod \ 1011 = 1111 \ XOR \ 1011 = 0100_2$
Using a Generator

- equivalent definition of a finite field
- a **generator** g is an element whose powers generate all non-zero elements
 - in F have $0, g^0, g^1, ..., g^{q-2}$
- can create generator from **root** of the irreducible polynomial, $f(x)$
 - g must satisfy $f(x) = 0$
- then implement multiplication by adding exponents of generator
Generator for GF(2^3)

- \(f(x) = x^3 + x + 1 \)
- \(f(g) = g^3 + g + 1 = 0 \) \(\Rightarrow \) \(g^3 = g + 1 \)
- \(g = g \)
- \(g1 = g1 \)
- \(g2 = g2 \)
- \(g3 = g + 1 \)

\[
\begin{align*}
g^4 &= g(g^3) = g(g + 1) = g^2 + g \\cr
g^5 &= g(g^4) = g(g^2 + g) = g^3 + g^2 = g^2 + g + 1 \\cr
g^6 &= g(g^5) = g(g^2 + g + 1) = g^3 + g^2 + g = g^2 + g + g + 1 = g^2 + 1 \\cr
g^7 &= g(g^6) = g(g^2 + 1) = g^3 + g = g + g + 1 = 1 = g^0
\end{align*}
\]
Generator for $\text{GF}(2^3)$

<table>
<thead>
<tr>
<th>Power Representation</th>
<th>Polynomial Representation</th>
<th>Binary Representation</th>
<th>Decimal (Hex) Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>000</td>
<td>0</td>
</tr>
<tr>
<td>g^0 (= g^7)</td>
<td>1</td>
<td>001</td>
<td>1</td>
</tr>
<tr>
<td>g^1</td>
<td>g</td>
<td>010</td>
<td>2</td>
</tr>
<tr>
<td>g^2</td>
<td>g^2</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>g^3</td>
<td>$g + 1$</td>
<td>011</td>
<td>3</td>
</tr>
<tr>
<td>g^4</td>
<td>$g^2 + g$</td>
<td>110</td>
<td>6</td>
</tr>
<tr>
<td>g^5</td>
<td>$g^2 + g + 1$</td>
<td>111</td>
<td>7</td>
</tr>
<tr>
<td>g^6</td>
<td>$g^2 + 1$</td>
<td>101</td>
<td>5</td>
</tr>
</tbody>
</table>
This makes multiplication easier

To multiply, add the power modulo 7

\[x^4 + x^6 = x^{(10 \mod 7)} = x^3 = x+1 \]

Construct GF(2^3) table again!
have considered:

- concept of groups, rings, fields
- modular arithmetic with integers
- Euclid’s algorithm for GCD
- finite fields GF(p)
- polynomial arithmetic in general and in GF(2^n)